MODELS OF EXTENDED ELECTRON STATES IN PROTEINS
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ABSTRACT. A new approach to the problem of electron states in the protein molecule is described.
A ‘dielectric cavity’ model is used for the protein globule as a basis for the consideration of the
extended states which are mostly formed by the polarization field of the protein macromolecule. In
a protein solution the size of such a state can be compared with the size of the macromolecule. The
share of the extended states in the biomolecular processes of charge transfer is discussed. Electron
energies of the ground and the first excited self-consistent states are calculated. Typical values of the
predicted energies of absorption bands and luminescence are found to be ~ 1000 nm for the ground
state’s absorption band and ~ 2000 nm for the excited state’s luminescence. Various methods for
the experimental observation of such states are discussed.

1. Introduction

Research into the theory of the polaron in condensed systems may significantly broaden
our knowledge of the electron states and transfer in biological systems. The most general
representation of the polaron may be given by the picture of an electron which, if placed
in a polar medium, enters into a self-localised state where it does not form chemical bonds
with the atoms of the medium. The polaron may be imagined as an electron being trapped
by a potential well formed by electron-induced polarization of the surrounding molecules
of the medium [1]. Using this representation, it was discovered that there are multiple,
rather than a single, discrete polaron states which have their own potential wells consistent
with the electrons trapped [2, 3]. One of the principal consequences is that the first excited
self-consistent polaron state has a large excitation region, and may include about 103-10*
and more molecules of the medium for water, ammonia and other polar liquids. These fin-
dings in their turn point to the necessity of critically analyzing the problem of long-distance
electron transfers [4, 5], namely their biological role and impacts. This paper is concerned
with a study of precisely these states in protein macromolecules. We shall show that the
allowance for the large-radius electron states may lead to many new results. The very fact
that they exist suggests new types of absorption and luminescence in solutions of globular
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proteins. For a spherically symmetric protein with an electron acceptor in the centre of the
globule the presence of an excited polaron state of large radius implies isotropy of binary
chemical reactions under excitation.

In this paper we present the physical representation of the polaron in a condensed me-
dium in agreement with the representation of the polaron properties of the protein molecule.
We shall formulate simple mathematical models of the polaron states in the protein and dis-
cuss some of the effects to which they lead.

2. A Continuous Model

In order to introduce into what is meant by large-radius electron states in globular pro-
tein macromolecules it is necessary to examine continuous representations of these objects.
It is also desirable to discuss the hierarchy of continual models we will use. The representa-
tion of a protein macromolecule that takes the form of a sphere in solution as its microphase
was introduced by Bresler and Talmud [6] who proceeded from the hydrophobic properties
of the protein. Progress in the modeling of protein globules led, in its turn, to a whole
set of electrostatic models 7, 8]. The simplest of them, which is the model of a dielectric
cavity, is shown in Figure la. The model assumes that ¢; < £o, which corresponds to a
low static dielectric permittivity of the protein medium compared to the strongly polarized
solvent. We stress that, this model, although very simple, can give a qualitative explana-
tion of a good many experimental findings on protein transport and electrophoresis [9]. A
more realistic model of a three-layer globule is shown in Figure 1b. This model allows for the

Figure 1. Two layer (a) and three layer (b) models of the protein globule.

contribution of different factors to dielectric permittivity in the region Ry < r < Rj. The
factors are: the presence of amino acid residues, the penetration of water molecules into the
superficial layer, the unsmoothness of the protein surface etc. We assume that, the solvent
molecules cannot penetrate into the region r < Ry. In this model ¢; < €2 < &g. Physical
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values of dielectric permittivity can be found experimentally: ¢; =~ 4 is the value for NN-
dimethylacetamide, which is the monomeric analogue of a protein peptide framework (the
solvent impervious region r < Ry); €0 = 80 is the value for water as a solvent; and the
layer Ry < r < Ry is ascribed a mean value of e, & 40, which in a more general sense is a
parameter of the model. There are many models which assume that dielectric permittivity
inside the globule depends on a coordinate (like ¢ = |7|) [10], including a good number of
nonlocal continuous models of the dielectric cavity [11].

While substantiating a mathematical model of polaron-type electron states in the pro-
tein globule, the ratio (r)/a is the most important parameter, where @ is the mean distance
between two neighboring atoms of the protein molecule, and (r) is the effective polaron
radius. The estimate @ draws a clear distinction between a protein macromolecule and an
ionic crystal for which the criterion (r)/@ > 1 shows that the model is continuous. In the
ionic crystal polarization is caused by a small deviation of ions from their equilibrium states,
so that @ ~ a where a is the lattice constant. The protein molecule requires an additional
averaging if the lifetime of the electron state is much larger than the characteristic time
of oscillation for twisting degrees of freedom and for deviations of macromolecular polar
groups, which normally is less than 10~'%s. This situation is illustrated in Figure 2 which
is the result of a molecular-dynamic computer simulation. In this way, for the long-living
states below, the model of a polar medium is ‘more continuous’ in the protein molecule than
in the ionic crystal.

Figure 2. A plane projection of the instantaneous configuration of the main chain (-IV-
C“-C-);, of a ferredoxin molecule (a), and superimposed projections of ten consecutive
configurations of this molecule taken with a time At equal to 0,6 ps (b).

3. A Polaron Model for an Infinite Isotropic Medium

A polaron description of the electron state in a polar medium usually starts with the as-
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sumption that the mean Coulomb field induced by the surplus electron locally polarizes the
medium. The electrical field in its turn influences the electron {1]. It is essential that the
electron interacts only with the inertial part of polarization it induces, so that

P(r) = Po(r) — Po(r) (1)
where
_€e—1 € —1
Po = 4Teqg D, Pe= 4ATE oo D

are specific dipole moments of static and high-frequency polarizations; €9 and €, are static
and high-frequency dielectric permittivities, respectively, and D is electron induction. Hence

D(r)
P = —L 2
(T) 4,”5 ’ ( )
71 = gzl — g5! is the effective dielectric permittivity. The vector of electric induction

caused by the distributed electron charge with density e|¥(r)|? is equal to
_ ne -7 ’

D(r)=c [ W0 =T e’ ®)
where ¥(7) is the wave function which can be given from the solution of the Schrédinger
equation

h2
% AV(r)+ ell(r)¥(r)+ W¥(r) = 0, 4)

where W is the electron energy. The potential II(r), created by the electron-induced pola-
rization VII(r) = 47 P(r), can, by (2) and (3), be found from the Poisson equation

ATl(r) + 4ré~e|¥(r)|2 = 0 (5)

The system of nonlinear differential equations (4) and (5) fully determines the state of
an electron in an infinite polar medium. Peckar [1] used variational principle to find the
ground state of Equations (4) and (5). Balabaev and Lakhno [2] integrated them numeri-
cally and obtained solutions corresponding to the excited polaron states different from the
ground state. The approach we have given here will be used further to describe the polaron
states in a protein globule.

4. The Polaron Equation for a Protein Globule

Our mathematical model of polaron states in the protein globule described by the model of
a dielectric cavity is based on the following assumptions:

(1) The globule is neutral and has zero effective surface net charge on the layer boundaries;

(2) The electron states in the globule are thought of as the acceptor’s potential-bound
polaron states;

(3) Each layer is described by a separate isotropic model of continual polar medium, and
the electron wave function and the potentials are assumed to be smooth both within
and on the boundaries of each layer;
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(4) All the other assumptions are identical with those adopted to describe the polaron states
in polar media [1].

For a spherically symmetric case the assumptions (1-4) yield the following equations for
the polaron in a protein globule

2
gﬁ (:_2 Ed? r zdz) ¥(r) + e(Il(r) + &(r))¥(r) + W¥(r) = 0 (6)
1 d d 4re
5 g )+ = ¥ (r)=0 (7

Ri_1<r<R;, i1=12,...; Ro=0,
where ®(r) is the potential of acceptor

B(r) = { gleir+cy r< Ry ®)

q/ear, r> Ry

for the two-layer model of the globule (g2 = ¢¢) and

g/exr + ¢, r< Ry
O(r) =1 qfear+cy, R <r<R, (9)
q/esr, r> Ry

for the three-layer model of the globule (e3 = €g). The constants ¢;, ¢] and ¢} are defined
from the continuity of potential ®(r) at the boundaries of globular layers; II(7) is the
potential of electron-induced polarization, p is the electron effective mass, &7 = el — ;!
are the effective dielectric constants of the ith layer, and ¢4, is the high-frequency dielectric
constant which we assume identical for all the layers.

The natural boundary conditions for Equations (6) and (7) follow from the condition
that the wave function is bounded and continual and that the potential is continual on the
boundaries of globular layers, so that

¥'(0) + E’% Y(0)=1'(0) =0, ¥(oo)=T(c0)=0
1
U(R; —0)=9U(R;+0), V'(R;-0)=Y'(R;+0) (10)

MR, —0)=TI(R; +0), &II'(R;-0)= i IU'(R; + 0)

Equation (6) is the Schrédinger equation for the electron in the potential —(II+ &) which
is given in a self-consistent way by (7). So, the nonlinear system of differential equations (6-
7) with the boundary conditions (10) describes bound polaron states in the protein globule.
Its solution determines the wave function of the electron state ¥ and the electron energy
W, as well as the total energy of the state Ir, which is given by the functional

6], 1] = ;_; /(W)?dr-e/wn+q>)dr+z ;7 /(VH)2dr (11)
1 Q;
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The last term of (11) is integrated over regions Q;, which correspond to the layers of
the dielectric cavity model. We should stress that Equations (6) and (7) may be given by
an independent variation of the functional (11) with respect to the wave function ¥(r) and

the potential II(r) with the wave function normalized by / U3 (r)dr = 1.

5. Solutions of Polaron Equations. The Ground State

The system (6-7) with the boundary conditions (10) can be integrated numerically. The
case of polar media homogenity (all ¢; = €o) suggests an F-centre problem solved by Lakhno
and Balabaev [3]. If one regards a many-layer model of a protein as being globular the so-
lution of the problem (6-7) is analogous to the previous one. The system has a discrete set
of solutions which are the self-consistent states of electron and polarization of the globule
and its surroundings. Figure 3a shows a node-free solution (zero mode), and Figure 3b the
solution with a node which corresponds to the excited self-consistent state (first mode). In
this section we only dwell on the findings for the ground state.

0.
0.
1
L 1 2
o
-0.0
-0.1/ 2 A

Figure 3. Solutions of the polaron equations for the two-layer (1) and the three-layer (2)
models of the protein globule: a—zero mode, b—first mode. The upper part of the figure shows
functions ¥(X)(f 47X?W¥2dX = 1) and the lower part shows functions I1(X) :TG, (= 0.09 II(X)).

For the two- and three-layer models of dielectric cavity Table 1 lists the following values
which characterize the self-consistent ground state: electron (W;s) and total (I;5) energies;
electron levels (non-self-consistent) in 2.5 (W,s) and in 2P (W,p) states and the correspon-
ding total energies (I2s5, Iop), as well as the states’ radii ({(r)1s, (r)2s, (r)2p) for both the
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models.

Table 1. Polaron state characteristics in the protein globule.

Physical Two-layer model?) Three-layer model®
valuel) 0-mode | 1-mode 0-mode [ 1-mode
Wis —1.316 -0.401 —2.200 —1.035
Was -0.529 —0.256 —0.697 —0.424
Wap —0.695 ~0.283 —0.806 —0.413
Lis —0.508 ~0.238 —1.243 —0.779
Is 0.280 -0.093 0.255 -0.169
Lp 0.114 -0.120 0.146 —0.158
(P15 3.7 8.3 2.3 3.1
(T)as 10.0 19.5 7.6 12.2
(r)2p 6.8 16.0 5.7 11.0

1) The values of energies Wi, Was, Wop and Iy, Ias, Irp are in eV;
the averaged radii (r)ys, (r)2s, (r)2p in A.
2 =20,60=80,600 =2, R =154, p=mg, Z=1.
Neg =4,60=40,63=80,600=2, Ri=TA Ry=154, p=mp, Z=1.

It can be seen that for the more realistic three-layer model the polaron radius in the
ground state is (r);s = 2.3 A, that does not agree with the approximation of the continuous
model. Accordingly, the quantity AWisop = |Wop — Wis| % 1.2 eV (~ 1000 nm) falls just
into the region of transitions with charge transfers of metal- containing proteins [12, 13].

6. The Excited Polaron States in the Protein Globule

Table 1 lists electron (W) and total (I) energies and radii (r) in the excited self-consistent
state (25) and the non-self-consistent states 1.5 and 2P, which correspond to the potential
polaron well 25 (Figure 3b). Note first of all that the radii of the excited self-consistent sta-
tes of both two- and three-layer models, which are 19.5 A and 12.2 A, respectively, greatly
exceed the mean distances between neighbouring atoms a of the medium, i.e. the continuous
approximation is reasonably accurate in this case. Qur calculation has shown close electron
energies in the self-consistent, 25, and non-self-consistent, 2P, states. In the three-layer
case the 2P state has a higher energy level than the 25 state. Since the dipole transfer to
the 1.9 state is only possible from the 2P state, the excited self-consistent 25 state can be
expected to have larger lifetime in the three-layer madel.

The table also yields the approximate estimate for the luminescence band for the three-
layer model, which is AW;p;5 = 0.61 eV (~ 2000 nm) i.e. it lies in the far infrared range.
It might be interesting to experiment with a band which, being the polaron one, could only
be identified by a preliminary estimation of the qualitative effects which pH, ionic strength
and temperature produce on the properties of the ‘polaron bands’.
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7. The Dielectric Cavity Model] and the Theory of Electron Transfer

The above considerations show that the electrostatic model of the protein globule is sui-
table for a consistent description of various processes pertaining to photoexcitation and of
electron transfer processes. For example, the probability w with which the electron of the
excited self-consistent 2.5 state of the protein molecule can tunnel from donor to acceptor,
can be given by the following expression [14, 15]:

w=L? exp(~— %1)(7r/1‘7,T)‘/2 exp(—(E, — J)}/4E,T)
(12)
E, =1/87¢ / |Dgs — Daeal2dr ,

where L is the matrix element of tunnelling; D can be determined from (3), J is the reaction
heat, @ is the averaged frequency of polarization oscillations in the molecule, and E, is the
total reorganization energy of the medium. Values L and D, can only be determined if
the acceptor model is defined.

1t follows in particular from (3) that probability of the tunnelling in the electrostatic mo-
del considered is proportional to the rate of the chemical reaction and relates to the form of
the electron states by the tunnelling matrix element L and inductions Dys and Daes. In this
case of extended electron states we can expect that the constant of the reaction rate should
relate to pH of the solution and spatial distribution of charged aminoacid groups, since the
induction D,s[¥) of (3) depends on the polaron wave function for the most polarisable parts

X(R)

Figure 4. Distribution of electron density in the protein globule for the three-layer
model; p(X) = 47 X2¥%(X); 1 is the zero mode and 2 is the first mode.
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of the protein molecule in the layer Ry < r < R, of our model (Figure 4).

8. Discussion

The representations of large-radius extended states introduced here give us a completely
new approach to the problem of electron transfer to great distances. The above results for
the model of a dielectric cavity show that the radius of the first excited state is comparable
to the size of the globule, which suggests that the whole globule is involved in the process
of forming such a state. If the acceptor is near the globule and the extended self-consistent
state has much the same energy as one of the acceptor’s electron states, then the represen-
tation of the electron as belonging either to the globule or the acceptor separately makes no
sense. If the acceptor is far from the globule, then it is significant which is the value of the
tunnelling matrix element L of the electron transfer (12). For a large-radius state it may be
several orders more than for a small-radius state.

Every excited self-consistent state may be put in accordance configuration coordinates.
For a consistent description of electron transfer it is necessary to take into account that the
electron can jump into intermediate self-consistent acceptor states and then go to the ground
state. Therefore a complex picture of electron transfer may be possible with branching the
chemical reaction coordinate (see Figure 5). This example is a very simple case where the
electron transfer from the state B to the state C may both be radiative and nonradiative,
and in more general cases cascade radiative and nonradiative processes are possible.

bu

q

Figure 5. Simple branching of the configuration electron transfer coordinate gq.

The existence of excited self-consistent states may lead to interesting effects on the lines
of EPR and NMR, IR absorption etc., which can be used to identify these states. The
discussion of these problems, however, is outside the scope of this paper.
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